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System Representation
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State Space & Transfer Function

Representations

A linear time invariant system (LTI) can be represented by a system of

first order differential equations:

X — AX+ BU State Space or time SX (S) X — AX ( )"‘ BU (S)
domain model

y =Cx+ Du Y(s)=CX(s)+DU (s)

where X € R" is the state, u € R™ is the (control) input y € R" is the output

Take the Laplace transform to obtain and solve for Y (s) in terms of U (s)
X (s)=[sl — A]* x, +[sl — A]"BU (s) Frequency domain

gy (5)=Clst - Al %, +6(5)U (5), 6(s)=Cls Al'B+D “/
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Characteristic Equation

Recall, the characteristic equation of A is

$(A1)=|A1 = A|l=A"+a, A"+ +a, A+a,

The roots of ¢(A)=0 are the eigenvalues of A

The transfer function can be written

Adj( A CAdj(A)B+Di|sl — A
\slj—(A\)B+D: ! \zl—A\‘ ‘
So we see that in the SISO case

G(s)=C[sl-A] ' B+D=C

G(s):%, n(s)=CAdj(A)B+Dlsl —A|, d(s)=g¢(s)

N1 4 The poles of G(s) are the eigenvalues of Al

Drexel



.
System Zeros




Example: Steam Power Plant Control
Inputs Outputs ?k

b S

heat flow  Q | drump pressure P,
water flow @, | drum water level 7

e

Throttle
Valve

throttle valve A steam flow @

S
Feedwater

Valves

Traditional design used 3 SISO controllers. The most
difficult issue was with drum level control, particularly
at low load levels. Consider 3 options:

w, >/

w,, A >/, P,

w,,A,Q—>1 P, o,

Downcome




Power Plant, 2

N number of riser sections
Ldo,L  downcomer length and riser section length (total riser length/N)
Ado,A downcomer, riser cross section areas

wi mass flow rate at ith node

Pi pressure at ith node

Ti temperature at ith node

Si aggregate entropy at ith node

Vi specific volume at ith node

wr,wdc,ws mass flow rates, riser, downcomer and turbine, respectively
vdf,vdg drum specific volume, liquid and gas, respectively
Pd drum pressure

Td drum temperature

V total drum volume

Vw volume of water in drum

xd net drum quality, xd=Vw/V

wsO throttle flow at rated conditions

PdO drum pressure at rated conditions

At normalized throttle valve position, at rated conditions At=1
Drexel
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Power Plant, 3

U1 =(, U2 = o, U3 = At

dway
at = f1(0av,51,52,53,Pav:Pd)

dsq
ot - 12(®av:51,Pav)+921(Pav.s1)u1+922(wav.Pd)u2

dso
ot - f3(wav,$1,52,Pav)+931(Pay.S2)u1

dss
ot f4(®av,52,53,Pav)+941(Pav,S3)u1

dsg
ot = f5(®av:53,54,Pav)+951(Pav.s4)u1

dPa\/
T = f6(03av,51,52,53,34, Pav’ Pd)+961(0)av’51132’53154’Pav)Ul

dPyq
= f7(0av,51,52,53.54,Pav.Pd, V) +971(0av.$1.52.53,54,Pav.Pd, Vw)Uu1+972(Pd, Vi) u2-973(Pd, Viw) U3

dVw
gt~ 18(®av.81,52,53,54,Pav.Pd. V) +981(®av.$1,52,53,54,Pav.Pd, Vw)u1+982(Pd, Vw)u2-983(Pd. Vw)u3

y1=Pd, y2=,=h2(Vw), Yy3=ws=h3(Pg)+d3(Pg)u3
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Linearized Dynamics, Poles

Imaginary

0.4

0.3

0.2

0.1

-0.1
-0.2
-0.3

-0.4
-1

Poles as a function of load level, 5%-100%
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Linearized Dynamics, Zeros
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Transmission Zeros
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Transmission Zeros
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Transmission zeros

imaginary
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Transmission zeros
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Resolvant Matrix and State Transition

Matrix

The matrix sl — A]_1 is called the "resolvent" matrix.
It's Inverse Laplace Transform is the "state transition matrix":

More about this

D (t)=2"([sl - A] ") =€ e

In terms of @ we can write

State response

X(t) = ()%, + j;®(t _7)Bu(z)dr

y(t) =Cd(t)x,+C ECD(t —7)Bu(r)dz + Du(t)

Output response
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A Stability Lemma

Lemma: Assume the system poles, i.e., the eigenvalues of the A
matrix are all in the strict left complex plane, then we have the
following:

(1) The response due to the initial state is,

and limd(t)x, =0

t—o0

(2) The response to the input, u(t) (x, =0)

y(t)=C j;®(t _ 7)Bu(z)dz + Du(t)
is bounded for every bounded input U (t).
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Stability Definitions

Definition: A linear time-invariant system is BIBO (Bounded-Input
Bounded-Output) stable if and only if every bounded input results in
a bounded output.

Definition: A linear time-invariant system is internally stable if the
solution X(t) of

X(t)=Ax(t), x(0)=x,
* tends toward zero as t — oo for arbitrary X, .

Aren’t these the same? -——- No!




Stability Theorems

Theorem: An LTI system with transfer function G(s) is BIBO stable if
and only if the poles of G (s) are strictly in the left half plane.

Theorem: An LTI system with state space parameters A, B,C,D is

internally stable if and only if the all of the eigenvalues of A are
strictly in the left half plane.

Note: Internal stability is a stronger condition than BIBO stability.
BIBO stability only reflects the attributes of the system that are
observable from the output and controllable from the inpui-There
may be hidden modes that are unstable. e e Alban T

later
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Similarity Transformations

x = Ax + Bu n m p, X =Ax+ bu

y = Cx + Du XxX€ER" , ueR",y€ER = el
Now consider the transformation to new states z, defined by

x=Tzez=T x

Tz=ATz+Bu z =T 'ATz+ T 'Bu

—

y=CTz+ Du y = CTz + Du
so that,

z=A"z+ B'u

* -1 * -1 * *
y = C*z + D*u A" =T AT, B =T""B, C"=CT, D" =D
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Diagonal Form

eigen—system

of A A Ay e A, « eigenvalues
" hy h, - h,< independent eigenvectors
T2[hy h, -+ hy,]
= A" =[hy hy -+ hy]7'A[hy hy - hy]
A, 0 - 0]
10 A, - :
o w0
0 - 0 A,

Zi =Nz +biu, i=1,..,n| == Adecoupled system
of n 15t order ode’s




Companion Form

Consider the single-input system: Apply the similarity transform to

X = AX+bu .
_ obtain the system:
and the transformation _ _ L

L ~ _ 0 1 0 0

ql qn °, *, .
. 7 = ' ' Z+|  |u

b Ab - AV T 0 A 0 1 0
q‘ e o ca A (L




.
Proof (1)

We proceed in two steps: First establish b”, then A’

o

ete=1=| %|[b Ab - Ab]=

G
=q,[b Ab - A™[=[0 - 0 1]

— b =T =]




TAT =

Proof (2)

T T=1=

oh
Gy A

G, AT
To compute Y, suppose det(Al —A)=A1"+a, A" +---+a,.
note C-H Theorem = A"+a A" +---+a,l =0

Y = qn AnT — qn (_an—l'a‘n_1 R a0I )T — _an—lqn An_lT T annT — [_aO _ai

Gp A

0, A"

QAT
q,A°T

|G, AT _

0

Y. Y,

Y =q AT

_an—l]



SISO Companion Forms

0 -a ]
TRz

O . .
~- Tl B

1 0 0]
- 74|
0 1

_al _an—l_ _1_

Controller/phase variable

0
- Z+bu
0 1
_al _ao_
s
Z+bu
1
O_

0]z

Observer

Observability




I
State Feedback Pole Placement

Given a linear system:
X =AXx+ Bu

find a state feedback control:
u = KX

such that the closed loop system:
X = AX+ BKx =( A+ BK)Xx

has a specified (self-conjugate) set of poles { P Pyy-ees pn}.
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Pole Placement Sol’'n: SISO Case

e Convert x = Ax+bu to controller form (phase variable form) using x =Tz:

0 1 0 | 0
o R L2
__ao _a1 _an—l_ _1_
0 1 0 |
eSetu=[k k, --- k,]zand obtain closed loop: z = 0 L
k-a, ky,—a - k,—a_]|

e Expand desired closed loop characteristic polynomial and

compare coefficients, and solve for k,... k. :
b, (A)=(2-p)(A-p,) - (A=-p,)=A"+a A"+t Doy =, - K, =8, —K,,...,a,, =a,_, —kK

n

Qt' e Convert back to x-coordinates: Kz = KT 'x = u = (KT ‘1) X

Drexel
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Pole Place Design: The Easy Way

PLACE Pole placement technique

K = PLACE(A,B,P) computes a state-feedback matrix K
such that

the eigenvalues of A-B*K are those specified in vector P.

No eigenvalue should have a multiplicity greater than the

number of inputs.
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Example: XV-15 Hover Dynamics

ul [-0.0124 -0.0025 1.3086 -32.162|[u] [ 0.6264 —0.0711]
d|w 0  -0.1901 0.1000 0.4963 || w 0  -5.3507 |5,
dt|q| | 0.0015 00003 -0.15534 0 |/ q| |-0.0734 0.0075 || 5,

0| | o0 0 1 0o |le] | o 0 |

u, body x — velocity
w, body z — velocity 0,

loc
q, pitch rate 0., collective pitch
@ pitch angle

rotor longitudinal cyclic pitch
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Example, XV15 Longitudinal Modes

unstable

A | -0.4280 -0.1915 C 0.1314+ j0.3084
u | 0999 0.2017 0.9999+ j0.0000
w | —0.0243 -0.9795 -0.0110+ j0.0052
G
0

—0.0054 -0.0002 0.0024+ j0.0026
0.0127 0.0012 —0.0044+ j0.0097
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Example, XV-15 Longitudinal Stabilizer

Collective pitch

0 W
= »  XV-15 » Vertical velocity
- Longitudinal
gloc Dynamics
Longitudinal
cyclic pitch X
K
. <
Stabilizer Measurements (all states)

Old eigenvalues:
Pog = {—0.4280,-0.1915,-0.1314 + j0.3084}
Choose new eigenvalues:
p={-0.5-0.2,-0.25+ j0.25}




XV-15 Pole Placement S
-0.0124 -0.0025 1.3086 —32.162 0.6264
PLACE Pole placement technique A= ° ~0-1901 - 0.10%0 04963 b= |
0.0015 0.0003 -0.15534 0 —0.0734
K = PLACE(A,B,P) 0 0 1 0 | 0

p= {—0.5, —0.2,-0.25+ J0.25,-0.25— j0.25}
K = [0.0074 0.0236 -11.4263 —5.2175]

u u| [-0.0711]
0. —>W
dlw (A bK) W s -5.3507 p ,
e —\"- co s+0.5137)(s° +0.4952s5s+0.1275
dt| g q|"| 0.0075 G — 5 3507 )( 2 )
0 0| | o | (s+0.5)(s+0.2)(s +O.55+O.125)
[ —0.0170 -0.0173 8.4660 -28.89801|[u] [-0.0711]
B 0 —0.1909 0.1000 0.4963 W .\ —5.3507 p
1 0.0020 0.0020 -0.9921 -0.3830 g 0.0075 | ©
S$ 0 0 1 o Jle]| o

Drexel
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Routh-Hurwitz Stability Criterian

e Given a polynomial that represents the pole polynomial of a
transfer function or the characteristic polynomial of square matrix
it is very easy to determine the roots (and therefore assess

stability) using numerical computations - providing the coefficients
are all specified!

e But suppose one or more of the coefficients are not specified.
Rather, we want to determine an admissible range of values such
that the system is stable. That is the control designer’s problem
and where the Routh-Hurwitz criterion is useful.
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Routh-Hurwitz -2

Theorem: Consider the polynomial
p(s)=s"+a,,s"" +---+aS+a,

A necessary condition that all roots are strictly in the left half plane is
that all coefficients are strictly positive.

Note that this provides only a necessary condition. To determine a
necessary and sufficient condition we assemble the Routh array.
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Routh-Hurwitz-3

Theorem: Consider the polynomial

p(s)=s"+a,,8"" +--+as+a,

The associated system is (BIBO or internally) stable if and only if all
elements of the first column of the Routh array are strictly positive.

If the polynomial is the
Characteristic polynomial

of the A matrix
If the polynomial is the

‘minimal’ transfer function
denominator
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Routh Array

S|
s)=s"+a_ .,  +---+asS+a 2 neven
p(s) - %S T % # columns =< 2
. . il nodd
Construct a matrix as shown by with 2
the first two rows using the using the e —
above polynomial coefficients. o 1
Then construct the remaining rows ot | 2
1 a_, 1 a_, - n-1 n-3
b1 _ a‘n—l a'n—3 b _ an—l a‘n—5 S . bl b2
- ] 2 - yuns n_
a, a, S C, C,
an—l an—3 an—1 an—5
b b, b, b, 0
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Routh-Hurwitz - Example 1

p(S) =° +15s" +74.255° +121s” + 20Ks + 2K

s° |1 74.25 20K
s* |15 121 2K
s® | 65.9 19.86K
s? | 121-4.52K 2K
¢! 2271K —89.76K*°

121-4.52K
s | 2K

121-4.52K >0, 2271K —89.76K* > 0,K >0

| K <22 26760 |k <221 25308
S$ 452 89.76

Drexel

UNIVERSITY



Routh-Hurwitz — Example 2
p(s)=s"+(1+K)s’+(1+6K)s* +10Ks +8K

st |1 1+6K 8K
s° [1+K 10K 0
. 2

o | 1-3K +6K o o
1+K

|| 2K (1-23K +26K?)

S > 0
1-3K +6K

s° | 8K

e 1+K>0 1-3K+6K?>0, 1-23K+26K*>0, K>0

Drexel
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